Exponentially convex functions generated by Wulbert’s inequality and Stolarsky-type means
نویسندگان
چکیده
منابع مشابه
Stolarsky Type Inequality for Sugeno Integrals on Fuzzy Convex Functions
Recently, Flores-Franulič et al. [A note on fuzzy integral inequality of Stolarsky type, Applied Mathematics and Computation 208 (2008) 55-59] proved the Stolarsky’s inequality for the Sugeno integral on the special class of continuous and strictly monotone functions. This result can be generalized to a general class of fuzzy convex functions in this paper. We also give a fuzzy integral inequal...
متن کاملGeneralization of Stolarsky Type Means
provided that f : a, b → is a convex function 1, page 137 , 2, page 1 . This result for convex functions plays an important role in nonlinear analysis. These classical inequalities have been improved and generalized in a number of ways and applied for special means including Stolarsky type, logarithmic, and p-logarithmic means. A generalization of H.H inequalities was obtained in 3–5 , 2, page ...
متن کاملJENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS
In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.
متن کاملAn inequality related to $eta$-convex functions (II)
Using the notion of eta-convex functions as generalization of convex functions, we estimate the difference between the middle and right terms in Hermite-Hadamard-Fejer inequality for differentiable mappings. Also as an application we give an error estimate for midpoint formula.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2012
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2011.11.032